623 research outputs found

    A note on upper ramification jumps in Abelian extensions of exponent p

    Get PDF
    In this paper we present a classification of the possible upper ramification jumps for an elementary Abelian p-extension of ap-adic field. The fundamental step for the proof of the main result is the computation of the ramification filtration for the maximal elementary Abelian p-extension of the base field K. This result generalizes [3, Lemma 9, p. 2861, where the same result is proved under the assumption that K contains a primitive p-th root of unity. To deal with this general case we use class field theory and the explicit relations between the normic group of an extension and its ramification jumps, and we obtain necessary and sufficient conditions for the upper ramification jumps of an elementary Abelian p-extension of K

    Retinoic acid-induced differentiation sensitizes myeloid progenitors cells to ER stress

    Get PDF
    The clonal expansion of hematopoietic myeloid precursors blocked at different stages of differentiation characterizes the acute myeloid leukemia (AML) phenotype. A subtype of AML, acute promyelocytic leukemia (APL), characterized by the chimeric protein PML-RARα is considered a paradigm of differentiation therapy. In this leukemia subtype the all-trans-retinoic acid (RA)-based treatments are able to induce PML-RARα degradation and leukemic blast terminal differentiation [1-2]. Granulocytic differentiation of APL cells driven by RA triggers a physiological Unfolded Protein Response (UPR), a series of pathways emanating from the ER in case of ER stress, which ensues when higher protein folding activity is required as during differentiation. We show here that, although mild, the ER stress induced by RA is sufficient to render human APL cell lines and primary blasts very sensitive to low doses of Tunicamycin (Tm), an ER stress inducing drug, at doses that are not toxic in the absence of RA. Importantly only human progenitors cells derived from APL patients resulted sensitive to the combined treatment with RA and Tm whereas those obtained from healthy donors were not affected. We also show that the UPR pathway downstream of PERK plays a major protective role against ER stress in differentiating cells and, by using a specific PERK inhibitor, we potentiated the toxic effect of the combination of RA and Tm. In conclusion, our findings identify the ER stress-related pathways as potential targets in the search for novel therapeutic strategies in AML

    Therapeutic advances in ADPKD: the future awaits

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies. Graphical abstract: [Figure not available: see fulltext.

    Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    Get PDF
    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods

    Aryl hydrocarbon receptor activation during in vitro and in vivo digestion of raw and cooked broccoli (brassica oleracea var. Italica)

    Get PDF
    Broccoli is rich in glucosinolates, which can be converted upon chewing and processing into Aryl hydrocarbon Receptor (AhR) ligands. Activation of AhR plays an important role in overall gut homeostasis but the role of broccoli processing on the generation of AhR ligands is still largely unknown. In this study, the effects of temperature, cooking method (steaming versus boiling), gastric pH and further digestion of broccoli on AhR activation were investigated in vitro and in ileostomy subjects. For the in vitro study, raw, steamed (t = 3 min and t = 6 min) and boiled (t = 3 min and t = 6 min) broccoli were digested in vitro with different gastric pH. In the in vivo ileostomy study, 8 subjects received a broccoli soup or a broccoli soup plus an exogenous myrosinase source. AhR activation was measured in both in vitro and in vivo samples by using HepG2-Luciaâ„¢ AhR reporter cells. Cooking broccoli reduced the AhR activation measured after gastric digestion in vitro, but no effect of gastric pH was found. Indole AhR ligands were not detected or detected at very low levels both after intestinal in vitro digestion and in the ileostomy patient samples, which resulted in no AhR activation. This suggests that the evaluation of the relevance of glucosinolates for AhR modulation in the gut cannot prescind from the way broccoli is processed, and that broccoli consumption does not necessarily produce substantial amounts of AhR ligands in the large intestine

    Stepwise shortening of agalsidase beta infusion duration in Fabry disease: Clinical experience with infusion rate escalation protocol

    Get PDF
    Background: Although enzyme replacement therapy with agalsidase beta resulted in a variety of clinical benefits, life-long biweekly intravenous infusion may impact on patients’ quality of life. Moreover, regular infusions are time-consuming: although a stepwise shortening of infusion duration is allowed up to a minimum of 1.5 hr, in most centers it remains ≥3 hr, and no data exists about the safety and tolerability of agalsidase beta administration at maximum tolerated infusion rate. Methods: In this study, we reported our experience with a stepwise infusion rate escalation protocol developed in our center in a cohort of 53 Fabry patients (both already receiving and treatment-naΪve), and explored factors predictive for the infusion rate increase tolerability. Results: Fifty-two patients (98%) reduced infusion duration ≤3 hr; of these, 38 (72%) even reached a duration ≤2 hr. We found a significant difference between the mean duration reached by already treated and naΪve patients (p <.01). More severely affected patients (male patients and those with lower enzyme activity) received longer infusions for higher risk of infusion-associated reactions (IARs). A significant correlation between anti-agalsidase antibodies and IARs was found. Conclusion: Our infusion rate escalation protocol is safe and could improve patient compliance, satisfaction and quality of life

    Effect of a Short-Course Treatment with Synbiotics on Plasma p-Cresol Concentration in Kidney Transplant Recipients.

    Get PDF
    We evaluated whether a short-term course with synbiotics may lower plasma p-Cresol concentrations in kidney transplant patients (KTRs) who accumulate this uremic toxin both because of increased production by their dysbiotic gut microbiome and because of reduced elimination by the transplanted kidneys. METHODS: Thirty-six KTRs (29 males, mean age 49.6 ± 9.1 years) with transplant vintage > 12 months, stable graft function, and no episode of acute rejection or infection in the last 3 months were enrolled in this single-center, parallel-group, double-blinded, randomized (2:1 synbiotic to placebo) study. Synbiotic (Probinul Neutro, CadiGroup, Rome, Italy) or placebo was taken at home for 30 days, as 5 g powder packets dissolved in water three times a day far from meals. The main outcome measure was the decrease in total plasma p-Cresol measured by high-performance liquid chromatography at baseline and after 15 and 30 days of placebo or synbiotic treatment. RESULTS: After 15 and 30 days of treatment, plasma p-Cresol decreased by 40% and 33% from baseline (both p < 0.05), respectively, in the synbiotic group, whereas it remained stable in the placebo group. After 30 days of treatment, no significant change was observed in either group in renal function, glycemia, plasma lipids, or albumin concentration. Treatment was well tolerated and did not induce any change in stool characteristics. CONCLUSION: The results of this pilot study suggest that treatment with synbiotics may be effective to lower plasma p-Cresol concentrations in KTRs. Prospective larger scale, longer term studies are needed to establish whether cardiovascular prognosis could also be improved with this nutritional intervention

    Optimization of gas sensors measurements by dynamic headspace analysis supported by simultaneous direct injection mass spectrometry

    Get PDF
    Dynamic headspace extraction is frequently used in gas sensors measurements. The procedure may introduce artefacts but its influence in sensor signals interpretation is rarely considered. In this paper, taking advantage of the on-line combination of a quartz microbalance gas sensor array with a proton transfer reaction mass spectrometer, we have been able to track the evolution of the concentration of volatile compounds along 75 s of extraction of the headspace of differently treated tomato pastes. Proton transfer reaction mass spectrometer signals show that VOCs are characterized by a large diversity of the evolution of the concentration. VOCs kinetics has been described by an electric equivalent circuit model. On the other hand, sensor signals continuously grow approaching a steady value. The contrasting behaviour between sensors signals and the concentration of most of VOCs is explained considering that water is the dominant component in the tomato paste sample and that water is one of those compounds whose concentration in the sensor cell steadily grows. Analysis of variance show that sensors signals achieve the largest separation between classes when the concentration of VOCs in the sensor cell reached its peak. Thus, although the sensor signals continue to rise their information content decays. This finding suggests that measurement protocols need to be adjusted according to the properties of the sample and that the actual measurement times could be much shorter than those predicted from the behaviour of sensor signal

    The effects of somatostatin analogues on liver volume and quality of life in polycystic liver disease: a meta-analysis of randomized controlled trials

    Get PDF
    A clear evidence on the benefits of somatostatin analogues (SA) on liver outcome in patients affected by polycystic liver disease is still lacking. We performed a meta-analysis of RCTs and a trial sequential analysis (TSA) evaluating the effects of SA in adult patients with polycystic liver disease on change in liver volume. As secondary outcome, we evaluated the effects on quality of life as measured by SF36-questionnaire. Six RCTs were selected with an overall sample size of 332 adult patients with polycystic liver disease (mean age: 46 years). Mean liver volume at baseline was 3289 ml in SA group and 3089 ml in placebo group. Overall, unstandardized mean difference in liver volume was − 176 ml (95%CI, − 406, 54; p < 0.133). Heterogeneity was low (I2:0%, p < 0.992). However, we performed a moderator analysis and we found that a higher eGFR significantly correlates to a more pronounced effect of SA on liver volume reduction (p = 0.036). Cumulative Z-curve in TSA did not reach either significance and futility boundaries or required information size. Three RCTs have evaluated Quality of life parameters measured by SF36-QOL questionnaire for a total of 124 patients; no significant difference was found on the effect of SA on QOL parameters when compared with placebo. The present meta-analysis revealed a potential effect of SA on reduction of liver volume and quality of life parameters, but results did not reach a statistical significance. These data could be explained by the need of further studies, as demonstrated through TSA, to reach an adequate sample size to confirm the beneficial outcomes of SAs treatment
    • …
    corecore